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1.0 Introduction

The Software Implemented Fault-Tolerance (SIFT) computer system was developed
for NASA by SRI International as an experimental vehicle for fault-tolerant
systems research. The SIFT effort began with broad, in-depth studies stating
the reliability and processing requirements for digital computers which would,
in the aircraft of the 1990's, control flight-critical functions. (See refs.
1 and 2,) Detailed design studies were made of fault-tolerant architectures
which could meet the required reliability and processing requirements. (See
ref, 3) Following these studies, SRI International and the Bendix Corporation
designed and built the SIFT system which was delivered to NASA's AIRLAB
facility in April 1982 (see ref. U). The SIFT architecture consists of a
fully distributed configuration of Bendix BDX930 processors with a point-to-
point communication link between every pair of processors. (See fig. 1.)
Although the design can accommodate up to eight processors, only six
processors are in the current system; hardware reliability estimations have
demonstrated that this is adequate to meet the stated reliability goals of a
probability of failure less than 10”° for a 10-hour flight.

Important distinctions between SIFT and other fault-tolerant computers are:

1. The functions supporting fault tolerance are primarily implemented
in software (e.g. voting).

2. Different tasks can be supported at different replication levels
(i.e. a non—critical task may be simplex whereas more critical
tasks can be replicated 3~fold or 5-fold).

3. The unit of reconfiguration is a complete computer, i.e.
processor, memory, and busses.

L4, The design is not based on a special CPU or memory design.

5. The redundant computers are loosely synchronized.

The assignment of tasks to processors in SIFT is predetermined by a task
schedule table which is constructed by the application designer. The SIFT
scheduler periodically dispatches tasks according to this schedule. Random
processor failures which occur during system operation create different sets
of working processors, or configurations. The application designer must
define a task schedule for each level of configuration the system may
encounter. Reconfiguration in SIFT is accomplished by selecting the task
schedule which corresponds to the current set of working processors. The
decision to reconfigure is based on error information gathered when the data
from replicate tasks is voted.

The synchronization of the computers is fundamental to the correct functioning
of the communication system. Interprocessor communication is completely
asynchronous. No handshake signals or rendezvous mechanisms are used. The
validity of data is established by the precedence established in the task
schedule and the synchronization of the processors.

The SIFT operating system has two levels of authority. The Local Executive
contains procedures which support scheduling, voting and communications. The
Global Executive consists of tasks which cooperate to provide synchronization,
redundancy management (fault isolation and reconfiguration) and interactive
consistency. Since the delivery of SIFT, development and testing has
continued at NASA Langley Research Center and several versions of the
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operating system have evolved (see ref. 5). Each new version represents the
different strategies employed to improve the performance of particular
functions of the operating system.

Version B ~ The operating system as delivered.
Version R - Improved reconfiguration performance.
Version V - Improved vote performance.

In Version B, tasks which require extended execution time stretch their
alloted time slot by disabling the clock interrupt. This is unacceptable
because it results in varying delays in the execution of the periodic
application tasks. The largest delays were encountered during
reconfiguration. The operating system was redesigned to reduce this overhead.
This new version is referred to as Version R. Version R is able to support
reasonable task schedules without disabling the clock interrupts. Finally,
the vote system was redesigned to improve the vote performance. This version
is referred to as Version V.

The purpose of this document is to describe in detail Version V of the SIFT
operating system. An explanation of the relationship between Version V and
the two previous versions of the operating system is found in ref. 5. To
fully understand the material presented in this document, Volume II of this
report, "Software Listings", should be referenced when necessary. To
facilitate discussion of the software design, a description of the hardware
configuration precedes the software sections.

2.0 Hardware Configuration

The SIFT hardware consists of seven Bendix BDX930 avionics computers which
communicate via a point-to—point broadcast network. Each computer in the
system has a 16 bit CPU, 32K words of static RAM memory, 1K datafile memory,
1K transaction file memory, a broadcast controller, a 1553A controller, and a
real-time clock (see figure 2). The CPU is constructed from AM2901 bit slice
chips in a micro-programmed pipeline architecture and achieves a performance
level of 1 MIPS. The 15534 controller provides a MIL STD 1553A bus interface
for communication with external aircraft systems.

2.1 The Datafile, Transaction File and Broadcasting.

The datafile is a 1K memory block external to system memory which serves as a
buffer area for the broadcast and 1553A controllers. The datafile begins at
address T400,, and is partitioned into eight 128 word "mailboxes" (see figure
1). Each input data stream from the broadcast network is hardwired to a
mailbox, maintaining communication isolation. 1Included in the datafile
address space are 8 locations (DATAFILE[1016 -> 1023]) which are memory mapped
hardware registers (see figure 3). These registers provide access to the
1553A controller, the broadcast controller and the real-time clock. To
prohibit an errant remote processor from gaining access to the I/0 registers,
the local processor must own the last mailbox (DATAFILE[896 -> 1023]1). This
requirement causes each processor's mailbox ordering to differ. For example,
the mailbox ordering for processor 1 is 2-3-4-5-6-7-1. The ordering for
processor 2 is 1-3-4-5-6-7-2, and so on. A processor uses its mailbox for an
output buffer and pseudo input mailbox. A processor cannot actually broadcast
to itself. .
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The transaction file, location 3400,,, is used in conjunction with the
datafile to initiate a broadcast. Each data value in the datafile is
associated with a destination address (mailbox offset) held in the transaction
file. To broadcast a data value, the value is first stored in the datafile.
The location of this value, DOFF, is represented as an offset from the start
of the datafile, The desired destination mailbox offset, say MOFF, is stored
in the transaction file. To start the broadcast, the value's DOFF is loaded
into the transaction pointer TRANSPTR. The broadcast controller fetches the
data value, appends its MOFF and transmits the result. Upon completion of the
transmission, the broadcast receivers store the value at MOFF within the
mailbox that is attached to that receive line. Ideally, the index to MOFF
within the transaction file would equal the index, DOFF, of the data value
within the datafile. Unfortunately, the hardware maps datafile address bits
[9-8-7-6-5-4~3-2—-1—-0] into transaction file bits [8~7-6-5-4~-3-2-1-0-9]. This
associates datafile offsets 0 to 511 with all even transaction file offsets O
to 1022. Datafile offsets 512 to 1023 map to odd offsets from 1 to 1023.

The broadcast transmitter signals completion through the most significant bit
~of register PIDEOF. Though a single transmission nominally completes in 8.6
us, PIDEOF is signalled at 14.7 us. This allows for worst case contention for
the datafile at the receiver (see ref. 4).

2.2 The Real-Time Clock.

The real-time clock is a read/write register (referred to as CLOCK) which
produces interrupts at 1.6 ms intervals. The clock consists of a 16 bit
counter that is driven by the CPU's 16 Mhz crystal. The clock is therefore
synchronized exactly to the fetch—execute cycle of the CPU., The least
significant bit of the clock has a value of 1.6 us.

3.0 The SIFT Operating System

The SIFT operating system is implemented in Pascal and performs the following
major functions:

(1) task scheduling and dispatching
(2) data communication and voting
(3) redundancy management

(4) clock synchronization

(5) external 1/0

These operating system functions fall into two categories: Local Executive and
Global Executive. Items (1) and (2) are implemented in the Local Executive as
procedures. The Global Executive is a set of tasks which assume the
responsibility of items (3) through (5). The major distinction between the
Local and Global Executives is that the Global Executive tasks exchange data
and cooperate on a system wide basis, while the Local Executive procedures
produce their results independently. The Local and Global Executive functions
are presented in two separate sections. Each section contains a preliminary
discussion of applicable data structures before the executable code is
explained.

The Global Executive tasks communicate with each other and/or the Local
Executive. A data structure will be considered to be part of the executive
(Local or Global) that produces it. With this convention then, the ERRORS
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array, which is updated in the VOTE procedure, is considered as part of the
Local Executive even though it is the primary input to the redundancy
management function of the Global Executive. Likewise, configuration
variables such as NUMWORKING and WORKING, which may be used by Local Executive
procedures, are considered to be part of the Global Executive.

3.1 The Local Executive

The Local Executive has two main responsibilities: (1) the scheduling of tasks
and (2) the management of local data. The following data structures are used
by the Local Executive:

(1) Task table

(2) Task schedule

(3) Buffer information table
(4) Buffer table

(5) Vote schedule

(6) POSTVOTE array

(7) ERRORS array

The data linkage between these structures is illustrated in figure 4. Only
the POSTVOTE array and the buffer table are constructed completely by the
operating system. The buffer table, however, is derived from information
contained in the task table, task schedule and buffer information table.
These structures require some, if not all of their information to be entered
by the application designer. Since the SIFT operating system is driven by
static data structures, an understanding of them is central to a description
of the operating system.

3.1.1 Local Executive Data Structures
3.1.1,1 Task Tables (TT array)

The task table contains information specific to each task in the system. The
following Pascal record defines its structure:

TT: ARRAY[TASKID] OF RECORD
CAUSE: (TASKTERM, CLOCKINT, SYSTEMSTART);
BUFS: INTEGER;
ERRORS: INTEGER;
STKPTR: INTEGER;
STATE: ARRAY[0..128] OF INTEGER;
END;

Most of these fields are initialized and managed by the operating system.
Only the BUFS and STATE fields of the task table must be initialized by the
applications programmer., The BUFS field points to a list of the buffer
numbers in the buffer information table (described in detail below). This
list defines the task's output variables. The initial value of STATE
represents the task's stack as it would appear after an interrupt and holds
the task starting address, terminating routine address, and initial register
values. Since the task table is indexed by the variable TASKID, the order of
entry into this table defines the task's TASKID. Other fields in the task

table record are used by the scheduler. They contain the following
information:
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CAUSE - The reason for entry into the scheduler,

ERRORS - The number of times the task failed to complete,

STKPTR - A pointer to the top of the stack.
3.1.1.2 Task Schedules (SCHEDS array)
Task scheduling in SIFT is non-preemptive and is based on precalculated
schedule tables. The schedule table defines the set of tasks which will be
periodically dispatched. This period is called a major frame and is

partitioned into 1.6 ms slots. Each task is statically allocated a subframe,
which consists of a preset number of slots.

TASK SCHEDULE

SUBFRAME SLOT S61 S62 563 Séu S65 566
1 1 CLKTA CLKTA CLKTA CLKTA CLKTA CLKTA
2 3 IcTM ICTM IcM NULLT NULLT NULLT
3 6 ICT2 NULLT NULLT ICT2 ICT2 ICT2
4 8 ICT3 ICT3 ICT3 ICT3 ICT3 ICT3
5 13  NULLT MLS MLS MLS MLS MLS
6 15 GUIDA GUIDA GUIDA GUIDA GUIDA NULLT
7 17 PITCH PITCH PITCH PITCH NULLT PITCH
8 19  LATER LATER LATER NULLT LATER LATER
9 21 ERRTA ERRTA ERRTA ERRTA ERRTA ERRTA
10 23 NULLT NULLT NULLT NULLT NULLT NULLT
11 25 ICT1 IcTM ICT NULLT NULLT NULLT
12 28 ICT2 NULLT NULLT ICT2 ICT2 ICT2
13 30 ICT3 ICT3 ICT3 ICT3 ICT3 ICT3
14 35  NULLT MLS MLS MLS MLS MLS
15 37 GUIDA GUIDA GUIDA GUIDA GUIDA NULLT
16 39 PITCH PITCH PITCH PITCH NULLT PITCH
17 1 LATER LATER LATER NULLT LATER LATER
18 43 FAULT FAULT NULLT FAULT FAULT FAULT
19 45  NULLT NULLT NULLT NULLT NULLT NULLT
20 47 ICTM Icn IcT NULLT NULLT NULLT
21 50 ICT2 NULLT NULLT ICT2 ICT2 ICT2
22 52 ICT3 ICT3 ICT3 ICT3 ICT3 ICT3
23 57 NULLT MLS MLS MLS MLS MLS
24 59 GUIDA GUIDA - GUIDA GUIDA GUIDA NULLT
25 61 PITCH PITCH PITCH PITCH NULLT PITCH
26 63 LATER LATER LATER NULLT LATER LATER
27 65  RECFT RECFT RECFT RECFT RECFT RECFT

Figure 5. Typical task assignment in SIFT
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Figure 5 shows a typical task assignment for a 6 processor configuration. In
this schedule, the major frame contains 66 slots in 27 subframes (the RECFT
task takes two slots). The length of the major frame would then be 1.6 x 66
ms or 105.6 ms.

To support the different levels of configuration possible in the SIFT system,
there must be schedules for 5, 4, 3, and 2 processor configurations (not
shown). Although the Local Executive executable code and schedule table are
identical on every processor, each executive uses a unique schedule contained
in the schedule table. Each schedule is identified by the ordered pair
(NW,VPN), where the NW field indicates the number of working processors and
the VPN field is the virtual number of the processor which uses this schedule.
Every physical processor has a virtual processor number assigned to it during
reconfiguration. Since any processor may fail, the new virtual number cannot
be pre-determined. Thus, each processor contains all the schedules. The
schedules are initialized in BDX930 assembly code and have the following
format:

The first two entries identify the schedule, i.e, contain the information from
the (NW,VPN) ordered pair. The third field indicates the length of this
section and is used for paging through the schedules. The subsequent fields
contain a list of TASKIDs and the corresponding slot allocation. The end of a
section is indicated by a -1. The schedule table is referenced as an array of
integer:

SCHEDS: ARRAY[SCHINDEX] OF INTEGER;
The SCHEDS array also contains the Vote Schedule, which is described below.
3.1.1.3 Buffer Information Table (BINF array)
Before the buffer information table (BINF) can be constructed, the application

designer enters, in BDX930 assembly code, a list of EQU instructions
identifying each buffer name with a buffer number:

10
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ERRER EQU 33
GEREC  EQU 34
GEMEM EQU 35

The BINF array is then filled with a list of buffer names to represent each
task's output. A task's buffer name list is pointed to by the BUFS field of
the task table. Each list is terminated by a zero field. The buffer
information table is referenced as an array:

BINF: ARRAY[O..MAXBINF] OF BUFFER;

As an example, consider this portion of the BINF array.

0
BUF1 ERRER
0
BUF2 GEREC
GEMEM
0

If the Fault Isolation task's TASKID is FITID, and GEREC and GEMEM are its
output buffers, then TTLFITID].BUFS is set to point to BUF2. The buffer
information table is used by the SIFT operating system's initialization
procedure to build the buffer table, described next.

3.1.1.4 Buffer Table (BT array)

The buffer table, BT, is the central data structure used by the system for
redundancy management. This structure relates the number of working
processors and TASKID to the set of processors that computes the associated
task. The BT array is constructed during the SIFT operating system's
initialization procedure from data in the schedule table.

The buffer table is referenced as a two dimensional array of type BITMAP:
BT: ARRAY[PROCESSOR,TASK] OF BITMAP;

The BT array is not declared as a SET OF PROCESSOR to avoid the increased
overhead that would be involved in handling a set. The absence of bit
manipulation instructions in the BDX930 assembly language forces the use of
run time procedures to support sets in the SIFT Pascal cross compiler. The
type BITMAP is defined 0..255. Bit 0 of BITMAP is associated with processor
1 and bit 7 with processor 8.

3.1.1.5 Vote Schedule (SCHEDS array)
The vote schedule's structure is similar to that of the task schedule.

TASKIDs are entered in the subframe in which the task's data is to be voted.
A vote schedule follows each group of task schedules associated with a
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particular configuration (or number of working processors) and is thus
contained in the SCHEDS array (see section on Task Schedule) The vote
schedule is illustrated in figure 6.

VOTE SCHEDULE

SUBFRAME SLOT TASK : VARIABLES VOTED

1 1

2 3

3 6 ICT1 : EXPEX XRESE NDR

4 8

5 13 ICT3 : LOCK

6 15 MLS : QX QZ QY

7 17 GUIDA: PSIN PHIN RN QDELY QLATM TIMER
8 19 PITCH: CMDEL QDELZ CMDTH QPITM
9 21 LATER: CMDAI CMDRN
10 23 ERRTA:

-
N
o

12 28 ICT1 : EXPEX XRESE NDR

13 30 '

14 35 ICT3 : LOCK

15 37 MLS : QX QZ QY

16 39 GUIDA: PSIN PHIN RN QDELY QLATM TIMER
17 Ll PITCH: CMDEL QDELZ CMDTH QPITM

18 43 LATER: CMDAI CMDRN

19 45 FAULT: GEREC GEMEM

20 47

21 50 ICT1 : EXPEX XRESE NDR

22 52

23 57 ICT3 : LOCK

24 59 MLS : QX QZ QY

25 61 GUIDA: PSIN PHIN RN QDELY QLATM TIMER
26 63 PITCH: CMDEL QDELZ CMDTH QPITM

27 65 LATER: CMDAI CMDRN

Figure 6. Typical SIFT Vote Schedule.

As stated above, there is one vote schedule for each level of configuration
(i.e. all processors in a configuration use the same vote schedule). The
schedule assigns 0, 1 or more TASKIDs to a subframe. The buffers produced by
these tasks, as defined by the BINF array, are voted before the task scheduled
for that subframe is executed. The result of this vote is placed in the
POSTVOTE array. The restriction of allowing only one vote schedule for each
configuration level guarantees that all good processors contain exactly the
same data in the POSTVOTE array -— even if its schedule does not execute tasks
which use all the data. Although this appears wasteful, it protects the fault
isolation process. By having all processors vote all data, the processors'
error reports will more accurately reflect the system's status. Also, since
all data is available on every processor during reconfiguration, it is not
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necessary to transfer data to a processor when its new schedule contains a
task it previously had not executed.

3.1.1.6 POSTVOTE Array
The POSTVOTE array contains the result of the vote procedure.
POSTVOTE: ARRAY[BUFFER] OF INTEGER;

All processors must vote every task's data in order to maintain an accurate
POSTVOTE array. This restriction simplifies the reconfiguration process as
explained in section 3.1.1.5 Vote Schedule. An additional design guideline
requires that a task use only temporary variables during execution. If any
static storage is necessary, the task should define the data as output. The
data is then retrieved during the next iteration through the POSTVOTE array.

3.1.1.7 ERRORS Array
The ERRORS array is the Local Executive's link to the Global Executive.
ERRORS: ARRAY[PROCESSOR] OF INTEGER;

The Local Executive maintains a count of processor errors in the ERRORS array.
The Global Executive task, ERRTASK, uses this data to produce its error
report.

3.1.2 Local Executive Procedures and Functions

A listing of the Local Executive data structures, procedures and functions is
included in module Pascal SIFTOP.MCP. In addition to this Pascal code,
assembly code found in modules SIFTIH.SR and SCHEDULE.SR is used to support
Local Executive functions. The following sections will describe the
procedures and functions invoked during system startup and initialization,
clock interrupts and scheduling, voting, and inter-task communication.

3.1.2.1 System Startup and Initialization.

The first section of module SIFTIH.SR is set to absolute addressing mode to
allow definition of the starting address, 100,4, and interrupt vectors. There
are two active interrupts in the SIFT system: the power fail interrupt at
400, and the clock interrupt at 401,,. The only other functions performed in
absolute addressing mode in SIFT is the initialization of the transaction file
at 3400,,, and the datafile at TH400,,.

Beginning at 100,,, the CONT instruction disables interrupts and sets FLAG 1.
FLAG 1 is significant because it controls whether the BDX930 performs
saturated or unsaturated arithmetic. SIFT requires unsaturated, i.e.
unsigned, arithmetic and therefore FLAG 1 is set. After the CONT instruction,
an indirect branch is taken to thevrelative addressing portion of the assembly
code where the stack is defined in R15 as starting at 5000,,. The remaining
registers are cleared before the INITIALIZE routine is called. Upon return
from INITIALIZE, interrupts are enabled and a wait loop is entered.
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3.1.2.1.1 PROCEDURE INITIALIZE.

Procedure INITIALIZE is located in module SIFTOP.MCP. 1In this procedure, the
POWER, BT and TT arrays are initialized, the initial configuration is set and
initial synchronization is obtained. These functions shall be described in
the order of their execution.

3.1.2.1.2 PROCEDURE GPROCESSOR.

Procedure GPROCESSOR reads the processor's physical id number from PIDEOF.
The processor's id is hardwired into the most significant 4 bits of this
register. The value in PIDEOF must then be shifted to the right 12 bits to
obtain the PID.

3.1.2.1.3 PROCEDURE DBADDRS.

Procedure DBADDRS constructs array DBAD. Array DBAD maps processor PIDs into
indices to their mailboxes within DATAFILE.

3.1.2.1.4 PROCEDURE WORK.

Procedure WORK determines which processors are in the initial configuration.
This is indicated by the receipt of the processor PIDs in buffer R 0. Array
element WORKING[P] is set to true if processor P PID is received. (See section
on Global Executive data structures for a description of WORKING.)

3.1.2.1.5 PROCEDURE SYNCH.

Procedure SYNCH establishes initial system synchronization. The processors
wait for the highest numbered working processor to broadcast a synchronization
value. This procedure was necessary when the SIFT was hosted on the ECLIPSE
250 computer. The current host system starts the processors simultaneously,
thereby eliminating the need for this procedure.

3.1.2.1.6 Construct POWER2 Array.

Due to the lack of an EXP function in the cross compiler and the need to set
certain bits in the BT array, the POWER2 array is constructed, where

POWER2[I] := 2 EXP I;
3.1.2.1.7 PROCEDURE RECBUF(NW,P: PROCESSOR; S: SCHINDEX).

For a given level of configuration and TASKID, the BT array will return a
value indicating which processors computed the task. This information is
reduced from the task schedules by procedure RECBUF. To accomplish a complete
initialization of BT, RECBUF must be called for every schedule as defined by
the ordered pair (NW,P) and the index into SCHEDS, S.

In procedure RECBUF, each TASKID, T, within schedule (NW,P) is extracted and
used as an index to the BT array. The bit corresponding to the virtual
processor which uses this schedule, POWER2[P], is then set by a "boolean or"
operation (BOR) into BT[NW,T]. The reasons for excluding the null task,
NULLT, from this operation probably comes from some requirement in a previous
version and is now unnecessary.
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3.1.2.1.8 Resynchronizing.

Writing the BT array is expected to take a relatively long time, i.e. greater
than 25 ms. The SYNCH procedure is called once again to insure that the
processors don't drift too far apart, i.e. greater than 200 us.

3.1.2.1.9 Presetting Some Variables, the POSTVOTE and TT Arrays.

Variables PRESENTCONFIG and RECONF which are used during reconfiguration are
cleared. The global frame, major frame, and subframe counters, GFRAME,
FRAMECOUNT, and SFCOUNT respectively, are initialized. SFCOUNT is set to
MAXSUBFRAME to insure that the first time the SCHEDULER is executed, the task
schedule pointers are reset to the beginning of the schedule.

The POSTVOTE array is cleared and the TT array is initialized for all tasks.
3.1.2.1.10 PROCEDURE BUILDTASK(TASKNAME: TASK).

Procedure BUILDTASK calls assembly procedure REINIT, to initialize the STATE
and STKPTR fields of the TT record.

3.1.2.1.10.1 PROCEDURE REINIT(VAR STACK: INTEGER; VAR V: STATEVECTOR).

Procedure REINIT is found in module SIFTIH.SR. The STATEVECTOR, which is the
memory pool within the task table for the STACK, had its first entry set to
the task start address in module SCHEDULE.SR. The remaining entries are now
cleared. REINIT sets the STATEVECTOR (stack) to look as if the task had been
called by termination routine TTERM and then interrupted, with the exception
that the task resume address is instead the task start address. With this
structure, the SCHEDULER can treat the scheduling of each task as a resume
operation. When a task exits, the termination routine, TTERM, restores the
STATEVECTOR to this format. Registers R14 and R15 are not saved because they
are the heap and stack pointer, respectively. As of this writing, SIFT does
not use the heap. REINIT returns STACK set to point to the location 18 within
the STATEVECTOR. This will be the top of the stack when the task is started.

0 Task start address: supplied in module SCHEDULE,SR

1 Termination address: supplied by REINIT as TTERM-

2 RO

3 FLAGS

4-16 R1 - R13

17 Task resume address: supplied by REINIT as start address
18 <Top of Stack>

3.1.2.1.11 Establish Initial Configuration.

The ERRORS array is cleared and a temporary variable, RECONF, is constructed
based on the WORKING array to reflect the starting configuration. The
POSTVOTE value representing buffer GEXECMEMORY is set to equal RECONF. Buffer
GEXECMEMORY is used by the Global Executive to protect against a transient
disturbance that could cause an otherwise good processor to be reconfigured
out of the system (see section 3.2.3.3 FAULTISOLATIONTASK). Function XRECF is
called to bring the new configuration into effect. XRECF is a Global

Executive function and is explained in detail in section 3.2.3.H4,
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3.1.2.1.12 Initializing Modules SIFTAP and SIFTIC.

Procedures APPINIT and ICINIT are called to perform initialization procedures
in module SIFTAP.MCP and SIFTIC.MCP respectively. SIFTIC contains the
interactive consistency tasks which are discussed as part of the Global
Executive in section 3.2.2.

3.1.2.2 Clock Interrupts and Scheduling.

Clock interrupts occur every 1.6 ms and are vectored through location 401,,.
An indirect jump is made through location ACINT to the clock interrupt
handler. To accommodate the restriction of one word instructions for

—-interrupt vectors, the jump must be through page zero. Location ACINT is
therefore defined by a DEFPZ (define page zero) pseudo-instruction. Because
the DEFPZ instruction requires the address of the interrupt handler as an
argument, this instruction must occur after the interrupt handler (CINT). The
effect of the JMAO instruction is'to push RO onto the stack and save the
resume PC in RO.

The clock interrupt handler checks for the end of a subframe by incrementing
the repeat counter, RPCNT, and testing for zero. The current task is resumed
if RPCNT is non-zero. Otherwise the remaining registers and resume address
are saved and the stack is switched to the executive stack, 5000,,. The
scheduler is called with the interrupted task's stack pointer and a value (=1)
indicating a clock interrupt has occurred.

3.1.2.2.1 FUNCTION SCHEDULER( CAUSE: SCHED_CALL; STATE: INTEGER): INTEGER.

The scheduler is called to either terminate a task (CAUSE = TASKTERMINATION)
or schedule a new task (CAUSE = CLOCKINTERRUPT). Although CAUSE has a third
value, SYSTEMSTARTUP, it is never used. At system start, the SCHEDULER is
entered for the first time with CAUSE = TASKTERMINATION and TASKID = 0, i.e.
zero task. When a task terminates, the SCHEDULER substitutes the null task,
NULLT, for the active task for the remainder of the subframe.

To service a clock interrupt, the SCHEDULER must first check to see if the
current task is interruptable. In the current version of SIFT only the null
task and zero task should be interrupted. If any other task is interrupted,
that task's TT.ERRORS field is incremented and its STATEVECTOR rebuilt. As an
aid to debug, procedure PAUSE is called with the hexadecimal argument BADn,
where n is the TASKID, PAUSE places this "error message" in register R1 and
halts the processor.

Continuing with the processing of the clock interrupt, the frame counters,
SFCOUNT, FRAMECOUNT and GFRAME, are serviced and the schedule pointers, VP and
TP, are reset if necessary. Global variables TPI and VPI are defined during
the reconfiguration process and represent the beginning of this processor's
task and vote schedules, respectively, for the current configuration.

3.1.2.2.2 PROCEDURE TSCHEDULE,
Procedure TSCHEDULE loads the new TASKID and repeat counter, RPCNT, from the

task schedule. The repeat counter controls the number of 1.6 ms slots in the
next subframe and therefore, limits the amount of CPU time the new task can
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take. Global variable TP is maintained pointing to the next task schedule
entry. If the end of the task schedule is reached in fewer than MAXSUBFRAMES,
procedure TSCHEDULE schedules the null task for 3.2 ms.

3.1.2.2.3 PROCEDURE VSCHEDULE.

Procedure VSCHEDULE initiates the voting of task output data. At index VP
within the vote schedule will be either a list of TASKIDs or a -1 indicating
the end of the vote schedule., Procedure VOTE is called to perform the vote
function. A default value of -1 is placed in the POSTVOTE array for each
buffer which did not have a majority value,

3.1.2.2.4 Activating the Task.

On completion of TSCHEDULE and VSCHEDULE, a new task has been selected (TASKID
updated according to the task schedule) and all data voted (according to the
vote schedule)., The final function SCHEDULER performs is to retrieve the new
task's stack pointer and return this value to the assembly code routine, Upon
return from function SCHEDULER, R12 holds the new task's stack pointer value.
The switch is made to the task's stack, its registers and flags are restored,
and the task is resumed.

3.1.2.3 Voting.

The vote schedule contains a list of TASKIDs for each subframe. Procedure
YSCHEDULE removes one TASKID at a time from the list and passes this value to
procedure VOTE., Procedure VOTE calls either VOTE3 or VOTES (depending on the
replication level of the task) to vote the output data buffers associated with
the task. If any errors are detected, procedure ERR is called to increment
the offending processor error count. If a majority value is not found,
procedure FAIL is called to increment all the processor error counts. A
default value is substituted for the majority value in such cases. The
default value is -1 for all data.

3.1.2.3.1 PROCEDURE VOTE(TK: TASK; DEFAULT: INTEGER).

Procedure VOTE has two parameters, the id of the task to be voted, TK, and the
d¢efault value to be used if a vote fails, DEFAULT. Procedure VOTE must first
determine on which processors the task was executed before the task's data can
be retrieved and voted. Variable K is loaded with the the processor bitmap
contained in the BT array. Variable I is kept as a virtual processor number.
The status of the least significant bit of K is tested by function 0ODD, a 1
indicating that processor I computed task TK. Variable J accumulates the
replication count for task TK. Because the ERRORS array must be associated
with physical processor numbers, I is translated to a physical processor
number and stored in PREAL. Depending on the replication level, J, P'J' is
load with PREAL and D'J' with the datafile mailbox offset. Processor bitmap,
K, is shifted right by a divide by 2 and the next virtual processor is tested
for task TK.

After the replication level, J, of TK has been determined and all the P'J' and
D'J' loaded, the output data buffers of task TK are voted and the result
stored in the POSTVOTE array. Variable LBUFS is set to point to the task's
list of data buffers found in BINF, i.e. LBUFS = TT[TK].BUFS. Variable B is
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set to the first buffer number. The replication level determines the method
of voting, i.e.

If J <0 - DEFAULT is used
If 0 < J < 3 - Processor P1's value is used
If 3£ J <5 - Procedure VOTE3
IfdJd 25 - Procedure VOTES

Global variables V1..V5 are loaded with the replicate data. Global variables
are used to reduce the procedure call overhead. '

After a data buffer is retrieved, voted and stored in the POSTVOTE array, the
local processor replaces its representation of the data, found in the last
mailbox, with the voted value. The only known reason for this procedure is
that interactive consistency task 1 (ICT1) outputs data directly from the
DATAFILE without first copying the voted values from the POSTVOTE array.

Finally, pointer LBUFS is incremented and buffer number B updated. The vote
continues until no buffers remain, i.e. B = 0.

3.1.2.3.2 FUNCTION VOTE3(DEFAULT: INTEGER): INTEGER.

In function VOTE3 a three-way vote is performed on the data found in variables
V1, V2 and V3. A majority value is found when two values agree, therefore one
fault can be tolerated. If a value miscompares with the majority value,
procedure ERR is called with the associated processor number, P1..P3. If a
majority value cannot be found, the default value is substituted and the error
counts of all three processors are incremented.

3.1.2.3.3 FUNCTION VOTES5(DEFAULT: INTEGER): INTEGER.

Function VOTES performs a five-way vote on global variables Vi1.,.V5. A
majority is found when three values agree, therefore two faults can be
tolerated. If a value miscompares with the majority value, the associated
processor's error count is incremented. If a majority value cannot be found,
procedure FAIL is called to increment the error count of all processors, i.e.
P1..P5,

3.1.2.3.4 PROCEDURE ERR(P: PROCESSOR).

Procedure ERR increments the error count of processor P. The error count is
kept in array ERRORS.

3.1.2.3.5 PRCEDURE FAIL.

Procedure FAIL is used in VOTE5S to increment the error counts of all five
processors.

3.1.2.4 Inter—-task Communication.

Inter—task communication in SIFT involves the use of Local Executive
procedures to physically broadcast the data and then, during some other task,

to retrieve it via the vote subsystem. The entire process depends on the
correctness of the preset tables, schedules and arrays. Data transfer is done
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for other processors performing ICT1 to acknowledge communication with the
simulation.

3.2.1.2 Constants CLK BUF and CLK_TRANS.

CLKTASK performs its own broadcast. To broadcast its clock value, a processor
uses buffer R_O. The DATAFILE offset is 7*128 or 896 = TPBASE. The TRANSFILE
index associated with this buffer is 2¥896 - 1023 = 769. Constant CLK_TRANS
is set to this value. To set up the broadcast TRANSFILE[CLK_TRANS] must be
loaded with the mailbox offset of R_0, = 0, marked with the EOFBIT, 8000,,.
Constant CLK BUF is set to 8000,,.

3.2.1.3 Constant COMMDELAY.

Constant COMMDELAY represents the average delay of a clock transmission, 24,
clock ticks, or 38.4 us.

3.2.1.4 Constant OMEGA.

Constant OMEGA is the skew limiting factor. The optimum value for OMEGA has
been shown to be 134, clock ticks, or 209 us (ref. 7).

3.2.1.5 Array SKEW.

Array SKEW is used to hold the clock skews calculated during each processor's
window. SKEW is declared globally to avoid compiler errors which result when
too many local variables are used.

SKEW: ARRAY[PROCESSOR] OF INTEGER
3.2.1.6 The Body of CLKTASK.

CLKTASK begins by calling procedure DISABLE to disable the clock interrupts.
This is necessary to preclude clock interrupts during the exchange of clock
values. If clock interrupts were allowed, greater variance would be added to
the communications delay and, therefore, greater error to the clock reading.
Since there are 8 windows of 250 us each, a clock interrupt would definitely
occur during one of the windows.

Next all R_O buffers are cleared in preparation for the clock exchange. This
is probably unnecessary. The transaction file is initialized. This need only
be done once. '

The clock exchange is then performed. Beginning each window, the
corresponding processor's SKEW is set to zero and the window start time is
loaded into variable WINDOW. Global variables are needed when referencing the
clock to prevent the compiler from optimizing away the desired calculation.

If the current window is the local processor's broadcast window, the processor
enters a tight loop where the clock is repeatedly read and broadcast.

The accuracy of the broadcasted clock value depends on how quickly the
receiving processor recognizes the arrival of the new clock value. The
receiving processor reads the initial value of the broadcasting processor's
R_O buffer (the broadcaster may be ahead of the receiver and already have
broadcast clocks) and then loops until a different value arrives. The initial
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clock value is kept in PCLOCK, the new clock value in CCLOCK, and the
processor's own clock at that time in ACLOCK. When a new clock value arrives,
the SKEW, including the COMMDELAY, is calculated. The granularity of the loop
within the windows can insert additional skew between the processors. To
reduce this effect, once a clock value has been received, the processor drops
into a tighter loop waiting for the end of the window.

After all processor clocks have been exchanged, the clock correction is
calculated. For all working processors, their associated terms in SKEW are
summed. If the SKEW value is greater than or less than OMEGA its SKEW is
taken as zero. The clock correction, DELTA, is calculated as the average of
the SKEW terms. The clock correction, DELTA, is then applied to the clock.

3.2.1.7 A Lesson in Disabling Interrupts and Malicious Liars.

Before exiting CLKTASK, the interrupts are enabled. There are two problems
with disabling the interrupts during a task. First, a task may take longer
than indicated by the number of slots allocated to it in the schedule. This
would occur, for example, if the interrupts are disabled for longer than 3.2
ms., i.e. more than 2 slots. When the interrupts are re-enabled one, not two,
interrupts would result. The second problem arises when a task has a variable
execution time and enables the interrupts close to the occurrence of an
interrupt. Take, for example, a task that normally takes just under 3.2 ms to
execute. After the interrupts are enabled, the first interrupt is counted
immediately. The second interrupt is counted shortly thereafter. Now suppose
that due to the variance in the task's execution, it takes just over 3.2 ms to
execute. When the interrupts are enabled, only one interrupt is counted. The
second interrupt registers 1.6 ms later. The task actually takes 4.8 ms.

While this deviation from design specification is a problem, another effect is
more insidious. If the variance in task execution is dependent on output from
another task, a "malicious" processor can cause one processor to stretch its
subframe the extra 1.6 ms, while not affecting the others. This skew injected
into an otherwise "good" processor will eventually cause the "good" processor
to be reconfigured out of the system. This scenario is not far fetched.

Every processor's execution time is dependent on the other processors' data
due to the vote error processing. If a processor sends bad data to only one
processor, only that processor will record the error. The extra time spent
recording the error will delay the start of the next task on that one
processor,

This behavior was actually observed on the SIFT system. The baseline
operating system originally disabled the interrupts during scheduling, and
therefore during voting. 1In one subframe in which six values were voted,
interrupts were enabled just before the 3.2 ms interrupt. One processor
developed an intermittent fault which affected the broadcast transmission to
only two other processors. During normal system operation, the fault in the
one processor would cause the other two processors to be configured out of the
system! The clock task is especially susceptible to this failure mode due to
the dependence of the receive window length on whether or not the transmitting
processor's clock is seen. BEWARE!.
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3.2.2 The Interactive Consistency Tasks.

Interactive consistency, as implemented in SIFT, takes place in three discrete
steps, performed by three tasks: ICT1, ICT2 and ICT3. First, in task ICTi1,
external data is input and distributed. Next, in task ICT2, the data is
redistributed so that all processors have at least three copies of the data.
Finally, in task ICT3, the three copies are voted to produce one consistent
value for the data throughout the system. A significant feature of the
interactive consistency algorithm is that the processor that produces the data
originally, i.e. runs ICT1, should not participate in the redistribution of
the data, i.e. run ICT2. This is necessary to protect the system from the
effects of a "malicious" liar (see ref. 8). In SIFT, three redundant channels
are sampled by three processors executing task ICT1. Four processors execute
task ICT2. Task ICT2 is designed in such a way that if a processor is
scheduled to run both ICT1 and ICT2, the processor will not redistribute data
it produced when running ICT1. This rule is relaxed if there are three or
less processors in the configuration. All processors execute task ICT3 to
vote the data.

Data is input and distributed during ICT1 to input the "A", "B" or "C" buffers
(see section 3.2.2.1.1), depending on which redundant channel the processor is
sampling. For example, processor 1 executes ICT1 and, since it samples
channel 1, will broadcast its data to the A buffers. Processors 2 and 3 will
use the B and C buffers. The simulation expects ICT1 to execute on the first
three working processors. During ICT2, processor 1 would rebroadcast the B
and C buffers, processor 2 A and C buffers, processor 3 the A and B buffers
and processor 4 the A, B and C buffers. All processors should at this point
contain three copies of the A, B and C buffers. It remains for task ICT3,
which runs on all processors, to vote the three copies of the A, B, and C
buffers. The voted results are kept in the POSTVOTE array. To retrieve a
data value, an application tasks invokes the MEDIAN function (see section
3.1.2.4,5). The MEDIAN function will return the mid-value of the A, B, and C
buffers found in the POSTVOTE array.

3.2.2.1 The Data Buffers of the Interactive Consistency Tasks.

The interactive consistency tasks have no prominent data structures. There
are, however, several data buffers used during interactive consistency.

3.2.2.1.1 The "A,B,C" Input Buffers.

The interactive consistency tasks are designed to communicate with triply
redundant external devices. The current simulation provides 21 input
variables: ALPHA, BETA, ..., YCNTR. The three sets of data are kept in
buffers AALPHA, ABETA, ..., AYNCTR; BALPHA, BBETA, ... BYNCTR; and CALPHA,
CBETA, ..., CYCNTR (see module SIFTDEC.CON). The "A" series use buffer
numbers 40 thru 60. The "B" series use 61 thru 81, and the "C" series use 82
thru 102. This data is eventually processed as input to the application
tasks.

3.2.2.1.2 The "0O" Buffers.
The application tasks' output resides in buffers OCMDAIL, OCMDELE, ...,

OPITMO, buffers 103 thru 110, A data value representing the current
configuration is output in buffer ORECONF, 111, to keep the simulation
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informed of which SIFT 1553 channels can provide valid data. The application
tasks are iterative and must be kept synchronized to the correct iteration in
the simulation. Buffer OSYNC, 112, is used for this purpose. SIFT sends an
iteration count in OSYNC with new data. SIFT then expects the simulation to
return that value incremented by 1, indicating that input data for the next
iteration is ready. The simulation expects SIFT to return the iteration count
with the control response.

3.2.2.1.3 Buffers EXPECTED and XRESET.

If the simulation's next iteration of input data is not ready at the time SIFT
requires it, SIFT continues processing with random data. The synchronization
word expected from the simulation is saved in buffer EXPECTED to comply with
the design rule that tasks do not use permanent storage. The expected
synchronization word is voted and retrieved by the next iteration of the
interactive consistency tasks.

The application tasks perform an auto-land function. Buffer XRESET is used to
reset the application tasks to the proper mode whenever the simulation signals
that the auto-land procedure is to begin.

3.2.2.1.4 Buffers LOCK and NDR.

As mentioned above, it is entirely possible that a new set of input data will
not be available from the simulation when SIFT requires it. Since SIFT cannot
conveniently wait for the data (this would disrupt measurements of the
system's performance), a provision has been made to provide random data to the
application tasks whenever "real" data is not available. When random data is
used, the tasks' current set of output must be saved since some of the data
will be used to continue the integration functions found in the control
algorithms during the next iteratlon. Also, the resulting random output must
not be sent to the simulation.

Buffer NDR is used to communicate to all processors the status of the input
data, i.e. NDR = 1 if real data is available. During interactive consistency
task 3, if real data is not ready, the tasks' output data is saved in a
temporary array (TEMPVOTE)., Buffer LOCK signifies that random data has been
processed and that the output function should not be done. These functions
are only necessary when interfacing to the simulation and would not be
required in an actual aircraft system.

3.2.2.2 GLOBAL FUNCTION ICT1,

Task ICT1 performs the input/output to the external devices on the 1553 bus.
This function is complicated by the fact ICT1 must synchronize with the
simulation. ICT1 outputs data according to the state of buffer LOCK. It
determines if new data from the simulation is ready and supplies random data
if not. The status of the data, random or real, is communicated to ICT3 thru
buffer NDR. The following procedures are used during task ICT1.

3.2.2.2.1 FUNCTION RANDOMIZE(SEED: INTEGR): INTEGER.

Function RANDOMIZE computes a pseudo-random number based on the value of SEED
The function used is standard for a 16 bit machine.
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3.2.2.2.2 PROCEDURE COMUN1553A(ADR,N,SA,MODE,RT: INTEGER).

Procedure COMUN1553A sends and receives data on the 1553 bus. The parameters
of COMUN1553A are used to construct command words for the 1553 controller.
The parameters are: :

ADR: The starting address of the data. Must be within the DATAFILE,
i.e., 7400,, to T7FF,s. Typically I/0 is done from the last
mailbox, 7780, to T7FF,.

N: The number of words to transfer. Up to 32 words may be
transferred.

SA: The sub_address of the device. Each remote terminal can have 32
sub—addresses. The sub-address is inserted in bits 5 thru 9 of
the command word. To address sub_address 1, SA = 20,4. I1/0 is
sent to sub-address 0; synchronization data to sub—address 1.

ME: Indicates whether data is to be transmitted or received. MODE = 0
for transmit, 400,, for receive.

RT: The remote terminal address. Up to 32 remote terminals can be
addressed on the 1553 bus. The remote terminal address is
inserted into bits 11 thru 14. Remote terminal 1 is then
addressed as 800,,.

COMUN1553A begins by constructing the command word (= N + SA + MODE + RT).
The address (ADR) and command word are then loaded into their respective
controller registers (ADR1553A and CND1553A, see figure 3). Procedure
WAIT1553A is called to wait for the controller to signal completion. If an
error occurred, the operation is retried. If no error, COMUN1553A waits an
amount of time equal to a retry.

3.2.2.2.3 PROCEDURE GETNDR.

Procedure GETNDR communicates with the other processors running ICT1 to
determine if the simulation’'s next iteration of data is ready to be
transferred to SIFT, i.e. if new data is ready. The processors running ICT1
use the R_O buffer to indicate whether or not they received the expected synch
word. GETNDR begins by clearing the R_0 buffers, a 1 being a positive
indication. The synch word is then input over the 1553 bus, If it is equal
to the expected value or RESET then the processor's R_0 buffer is set to 1.
Buffer R_O is then broadcast. GETNDR must then wait for a time greater than
the maximum skew that can be expected between the processors before the R_0
buffers of the other processors can be checked. This time is equivalent to
the MAX WINDOW time used by the clock task, see section 3.2.1.1. Before
entering the time-out loop, the processor's input buffer area is chosen, i.e.
the A, B, or C buffers. Variable INDEX, which is set to point to the chosen
buffer area, is declared globally to avoid the overhead of passing the value
as a parameter.

3.2.2.2.4 PROCEDURE GETREALDATA,

Procedure GETREALDATA is called once a consensus has been reached that new
input data is available from the simulation. The synchronization word is
input again since this processor may not have received a valid copy, i.e. the
two other processors may have agreed that the new data was ready. If the
synchronization word indicates a reset operation, buffer XRESET 1is marked to
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alert the application tasks and the expected synchronization word, EXPNDR, is
set to the reset value, -1. The new data is then input. Global variable
INDEX which is used in the call to COMUN1553A has been previously set in
procedure GETNDR to point to either the A, B or C buffer. Buffer NDR is set
to a 1 to indicate that new data has been loaded.

3.2.2.2.5 PROCEDURE GETRANDOMDATA.

If synchronization with the simulation was not attained, random data is
substituted so processing can continue. Buffer XRESET is set to zero. A
reset is unnecessary while processing random data. Variable EXPNDR is
restored to its previous value (see section 3.2.2.2.8). The seed for the
function RANDOMIZE is calculated as the total subframe count. The input
buffers are then filled with random data. Finally buffer NDR is set to O,
indicating new data is not ready.

3.2.2.2.6 PROCEDURE GETNEWDATA.

Procedure GETNEWDATA is called after GETNDR. Sufficient time has therefore
elapsed since the "new data ready" query began, and the results can now be
tested. GETNEWDATA tests the R_O buffers of all working processors., If
buffer R_O is equal to 1 then variable READY is incremented. New data is
available if READY 2 2, i.e. 2 of the 3 processors executing ICT1 agree that
new data is ready. If NUMWORKING = 1 the local processor's indication is
sufficient. Procedure GETREALDATA is called if new data is ready,
GETRANDOMDATA if not.

3.2.2.2.7 PROCEDURE DISTRIBUTE.

Procedure DISTRIBUTE utilizes the broadcast bus's ability to transmit more
than one data value at a time. The procedure is similar to broadcasting a
single value except that the EOFBIT is set on the last element only.
DISTRIBUTE begins by loading the transaction file with the destination offsets
for all input buffers. The offsets are left-shifted three places, i.e.
multiplied by eight, as required by the hardware. A call to WAITBROADCAST
insures the broadcast bus is not busy. The EQFBIT of the last element of the
transaction file is then marked. Setting PIDEOF to zero enables multiple
transmissions. The TRANSPTR register is then loaded with a value equivalent
to INDEX to begin the broadcast. DISTRIBUTE waits until the broadcast is
complete.

3.2.2.2.8 The Body of ICT1.

Task ICT1 begins by loading variable EXPNDR with the expected synchronization
value. Buffer EXPECTED is initialized in procedure ICINIT. If the outputs
are unlocked, i.e. LOCK = 0, then new output data is sent to the simulation
along with the synchronization value. EXPNDR is set to the next expected
value. If new data is not ready this iteration, the former value of EXPNDR
must be restored. Variable OLDEXPECTED holds the original value of EXPNDR.,
If necessary, EXPNDR is restored in GETRANDOMDATA.

Procedure GETNDR establishes the value of the simulation's synchronization
word. Procedures GETNEWDATA and DISTRIBUTE input new data and broadcast it to
the other processors. The next iteration's synchronization value is saved in
buffer EXPECTED.
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3.2.2.3 GLOBAL FUNCTION ICT2.

Interactive consistency task 2, ICT2, rebroadcasts the data that was input and
distributed by interactive consistency task ICT1. Task ICT2 performs a key
function of the interactive consistency algorithm, i.e. it determines the
source of the input data replicates (i.e. which processors ran ICT1) and
rebroadcasts only that data which the host processor did not produce. Given 3
ICT1 replicates, at least four processors will be needed to do the rebroadcast
correctly. Once ICT2 completes, each processor in the system should have 9
copies of the input data, each data value from the 3 input channels replicated
3 times.

3.2.2.3.1 PROCEDURE REBROADCAST( VPX,P: PROCESSOR).

Procedure REBROADCAST broadcasts the 1553 data pointed to by parameters VPX
and P. VPX has a value O, 1, or 2 depending on whether the A, B, or C buffers
are to be broadcast. The buffers are located in processor P's mailbox.
REBROADCAST contains a straightforward loop which transfers the data from
processor P's mailbox to the host processor's output mailbox. The
corresponding transaction file locations are loaded during the transfer. Once
the broadcast bus becomes available, the EOFBIT is marked in the last data
value and the broadcast is initiated.

3.2.2.3.2 The Body of ICT2,

Task ICT2 begins by fetching the bitmap of those processors which executed
task ICT1. Variable IC1V contains the processor bitmap. Variable IC1P
maintains the virtual processor count as IC1V is interrogated. Variable VPX
will assume a value of 0, 1, or 2 depending on whether the A, B, or C,
buffers are to be broadcast. Buffers A, B, and C were produced by virtual
processors 1, 2, and 3 respectively. If IC1V is odd, then the virtual
processor indicated by IC1P executed task ICT1. ‘If less then 3 sets of
buffers have been rebroadcast, virtual processor ICIP's real processor number
is compared with the host processor's PID. If they are not equal, i.e. the
host processor did not produce the data as indicated by VPX, then procedure
REBROADCAST is called to broadcast the 1553 data located in processor P's
mailbox. This process continues until all working processors are tested.

3.2.2.4 GLOBAL FUNCTION ICT3.

Task ICT3 votes the data replicates produced by task ICT2., If 3 or more
processors are in the configuration, there should be 3 replicates of each data
item in the A, B, and C buffers. To locate this data ICT3 first determines
which virtual processors executed ICT1. The A, B, and C buffers were produced
by virtual processors 1, 2, and 3 respectively. Next, the processors which
executed the ICT2 task which rebroadcast the ICT1 data must be found. Valid
replicates are found in these processor mailboxes. Task ICT3 is also
responsible for saving and restoring data that would be corrupted while
outputs are locked.

3.2.2.4.1 PROCEDURE GETIC2PROC(IC1P: PROCESSOR).
Procedure GETIC2PROC finds the 3 processors which rebroadcast data produced by

processor IC1P when it executed ICT1. This set of processors is kept in
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global array VP. Variable IC2V contains the bitmap of processors which
produced ICT2., Variable IC2P maintains the virtual processor number and
variable REP the number of replicates found. GETIC2PROC will search for 3
replicates. Beginning with virtual processor 1, IC2V is tested until the next
processor which produced ICT2 is found. This processor is made part of the
set of processors kept in array VP if IC2P is not equal to IC1P or there are
Just 3 processors in the configuration. Although processor IC2P did not
rebroadcast data it produced, the data is in the correct location and can be
used if there are only 3 processors in the configuration.

3.2.2.4,2 PROCEDURE VOTEDATA(DB: INTEGER).

Procedure VOTEDATA retrieves and votes replicated 1553 data. Parameter DB
indicates which of buffer set (A, B, or C) is to be voted. Global array VP
contains the virtual processor numbers associated with the mailboxes which
contain the data replicates. Varilable BASE is an offset to the buffers to be
voted within the mailbox. Indexing through the data set, variable NB becomes
the offset to the particular data item. A deeply nested array access is
needed to keep the compiler honest when the pair (VP[i],NB) is translated into
the corresponding data values Vi, V2, and V3. A straightforward vote follows.
The majority value is stored in the POSTVOTE array. If a majority is not
reached, the processor halts with a value C3,;, in register R1.

3.2.2.4.3 PROCEDURE RESTORE.

Procedure RESTORE manages the storage and retrieval of the temporary data.
Procedure RESTORE has 2 states. If new data is ready and outputs were locked,
then outputs are unlocked and the temporary data is restored. If new data is
not ready and outputs were unlocked, then outputs are locked and the temporary
data is stored.

3.2.2. 4.4 The Body of ICT3

Task ICT3 begins by loading variable IC1V with the bitmap of processors which
executed ICT1., Variable IC1P is the virtual number associated with the
processor that computed ICT1. Variable DB takes on values 0, 1, and 2 for
1553 buffers A, B, and C respectively. If there are 3 or more processors in
the configuration, the virtual number of the processor which produced the data
associated with the current value of DB is extracted from IC1V and held in
IC1P. Procedure GETIC2PROC is then called to load global array VP with the
virtual processor numbers of the processors that rebroadcast IC1P's data. If
there are less than 3 processors in the configuration, processor 1 is assumed
to have produced valid data. Procedure VOTEDATA is called to vote the data
set. When all the data has been voted, procedure RESTORE is called to
maintain the temporary storage area.

3.2.2.4.5 GLOBAL PROCEDURE ICINIT.

Procedure ICINIT loads initial values for the EXPECTED, LOCK, OLATMO and
OPITMO buffers. It also clears the temporary storage areas.

3.2.3 The Redundancy Management Tasks.

The redundancy management tasks are responsible for interpreting the error
data accumulated during the vote process, locating faulty processors, and
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establishing a new task schedule based on the number of remaining good
processors. These functions are carried out by 3 tasks; the ERRTASK, the
FAULTISOLATIONTASK and the RECFTASK.

3.2.3.1 Data Structures and Buffers of the Redundancy Management Tasks.

It is the responsibility of these redundancy management tasks to construct the
data structures which accurately reflect the system's current configuration.
The following sections describe the data structures and buffers used to carry
out this function.

3.2.3.1.1 The Constant THRESHOLD.

The Local Executive's ERROR array is an input to the redundancy management
tasks. A processor's error count is deemed significant if it exceeds

THRESHOLD. THRESHOLD's current value is 3 and is defined in the error task.
3.2.3.1.2 Buffers ERRERR, GEXECRECONF, and GEXECMEMORY.

Buffers ERRERR, GEXECRECONF, and GEXECMEMORY all refer to sets of processors,
i.e., bits 0 thru 7 represent processors 1 thru 8. A bit marked in these
buffers indicates that the respective processor has failed. The redundancy
management tasks first interpret a processor's local error data, the ERROR
array, to construct the error report for that processor. The reports are then
broadcast to all processors in buffer ERRERR where they are examined and
compared to determine if any processor has in fact failed. Buffer GEXECRECONF
is used to distribute the configuration report. To prevent good processors
from being eliminated by transient errors, a processor must produce errors for
two consecutive frames (a frame is about 100 ms)., Buffer GEXECMEMORY is used
to hold the previous frame's actual configuration result. This will be
logically anded with the current iteration's configuration result to produce
the configuration report, GEXECRECONF. Thus, a processor has to be failed for
two consecutive frames before a reconfiguration can take place.

3.2.3.1.3 PRESENTCONFIG.

PRESENTCONFIG holds the configuration report that was used to derive the
processor's current configuration state. PRESENTCONFIG at one time was used
to determine if a reconfiguration was necessary, i.e. if PRESENTCONFIG was not
equal to the configuration report. Since the Version R modification, the
reconfiguration function is efficient enough to be performed every frame.

PRESENTCONFIG: BITMAP;
3.2.3.1.4 NUMWORKING and NW.
NUMWORKING and NW are two manifestations of the same entity, the number of
good working processors in the present configuration. Apart from the fact
that NUMWORKING is specified as a global variable and NW is not, there remains

no need for both these variables.

NUMWORKING AT NUMLOC: PROCESSOR; (* NUMLOC = 6800, *)
NW: PROCESSOR;
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In the original version of the operating system, NUMWORKING was used by those
procedures which counted from 1, NW by those which counted from O.

3.2.3.1.5 WORKING.

The WORKING array is constructed from the configuration report during
reconfiguration.

WORKING: ARRAY[PROCESSOR] OF BOOLEAN;

An element WORKING[P] is true if processor P is not marked as failed in the
configuration report.

3.2.3.1.6 The Processor Mappings VTOR, RTOV, and VTODF.

One of the major changes made in the operating system in going from the
baseline version to Version R was the use of virtual processor numbers to
reduce reconfiguration overhead. A processor's physical number is defined by
where it is located in the system rack. This also defines which datafile
mailbox the processor will transmit to. A processor's virtual number is
defined by the ordering of the working processors and indicates which task
schedule the processor is using. The three arrays VTOR, RTOV, and VTODF were
created to implement this modification.

VTOR: ARRAY[PROCESSOR] OF PROCESSOR;
RTOV: ARRAY[PROCESSOR] OF PROCESSOR;
VTODF: ARRAY[PROCESSOR] OF DFINDEX;

VTOR translates virtual processor numbers into physical (or real) processor
numbers. RTOV performs the inverse transformation. VTODF translates a
processor's virtual number into its corresponding datafile mailbox address.

3.2.3.1.7 Schedule Pointers TPI and VPI.

If the ERROR array is considered to be the Local Executive's input to the
Global Executive, then schedule pointers TPI and VPI are the Global
Executive's output. TPI is an index into the SCHEDS array and points to the
beginning of the task schedule the processor should execute. Similarly, VPI
points to the beginning of the vote schedule.

TPI,VPI: SCHINDEX; (* SCHINDEX = 0,..6FF,, ¥)
3.2.3.2 GLOBAL FUNCTION ERRTASK.

Task ERRTASK constructs an error report from the WORKING and ERRORS arrays.
The error report takes the form of a bitmap of processors. A marked bit
indicates that the corresponding processor is considered failed by the
reporting processor. A processor has to accumulate more than THRESHOLD errors
before the host processor will report the subject processor failed. The
current value of THRESHOLD is 3 The completed error report is broadcast into
buffer ERRERR

30




29-JUL-85 The SIFT Hardware/Software Systems - Volume I
A Detailed Description

3.2.3.3 GLOBAL FUNCTION FAULTISOLATIONTASK.

The FAULTISOLATIONTASK uses the error reports of all working processors to
arrive at a new system configuration of processors. For a processor to be
considered faulty, at least two different processors must report the subject
processor failed. All processors, both working and not working, are tested.
To preclude the possibility that a transient error might cause the removal of
a good processor from the system, a processor must be faulty for two
consecutive major frames.

The FAULTISOLATIONTASK begins by loading all the error reports into array
ERRPT. The error report is a bitmap of processors where a marked bit
indicates that the processor is failed., The FAULTISOLATIONTASK uses WORKING
and ERRPT to construct the new configuration, RECONF. RECONF is a bitmap of
processors where a marked bit also indicates a failed processor. A single bit
is marked in variable BITEST corresponding to the processor being examined,
i.e. BITEST = 1 when processor 1 is being tested, BITEST = 2 for processor 2,
BITEST = 4 for processor 3, etc. For all processors then, all working
processor error reports are tested, excluding the subject processor. If 2 or
more error reports have BITEST marked, BITEST is set in RECONF. The
configuration report as represented by the "boolean and" (BAND) of RECONF with
GEXECMEMORY is broadcast into buffer GEXECRECONF, GEXECMEMORY is the
preceding frame's actual configuration result, i.e. RECONF. A processor would
have to be failed for 2 consecutive frames before it would be marked as failed
in GEXECRECONF. The current frames configuration value, RECONF, is then
broadcast into GEXECMEMORY for use next frame.

3.2.3.4 GLOBAL FUNCTION RECFTASK and FUNCTION XRECF(RECONF: BITMAP).

Task RECFTASK calls function XRECF with parameter GEXECRECONF. Function XRECF
is also used by procedure INITIALIZE to establish the initial configuration.

Function XRECF computes the configuration-dependent data structures. This
computation is done whether the configuration has changed or not. The time
elapsed during RECFTASK is therefore constant from frame to frame. Using the
reconfiguration word, RECONF, XRECF constructs the WORKING, VTOR, RTOV and
VTODF arrays. The working processor count, NW, is also set. Variable
PRESENTCONFIG is set to RECONF. PRESENTCONFIG has no real purpose other than
for testing and data acquisition. The reconfiguration word is also stored in
buffer ORECONF for output to the simulation. XRECF then scans the schedule
tables for the section built for the current number of working processors, NW.
Within each section is a schedule table for each virtual processor and the
vote table. XRECF locates the task schedule assigned the host processor and
sets the initial task schedule pointer, TPI, to the first entry in the
schedule. If a task schedule cannot be found for the host processor, the host
halts with a value of FOOB,, in register R1, indicating it has been configured
out of the system. The remaining processors establish the initial vote
schedule pointer, VPI, and global variable NUMWORKING.
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